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GAS–CONDENSATE FLOW IN THE VICINITY

OF A HYDRAULIC FRACTURE

UDC 532.546O. Yu. Dinariev and N. V. Evseev

The problem of gas–condensate flow in the vicinity of a production well with a hydraulic fracture
is considered. In the matrix, the flow is assumed to be three-dimensional, and at the fracture, it is
assumed to be two-dimensional. It is shown that, for steady-state flow, the problem is split into a
physicochemical problem (of phase transitions) and a filtration problem (of determining the pressure
field). Numerical solutions are constructed for a rectangular fracture with finite and infinite conduc-
tivities.
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Introduction. In gas–condensate reservoirs, a situation often occurs when the reservoir hydrocarbon mix-
ture is in a steady single-phase (gaseous) state under the initial thermobaric conditions. During exploitation, the
reservoir pressure declines, the mixture becomes thermodynamically unstable, and a liquid phase (condensate) ap-
pears (this phenomenon is called retrograde condensation [1, 2]). From the point of view of reservoir performance,
condensate formation is an unfavorable factor. First, transition of higher hydrocarbons to a liquid phase, as a rule,
results in their irreversible losses in the reservoir; second, the occurrence of the liquid phase leads to deteriora-
tion of the rock transport properties and, hence, a reduction in well productivity. To optimize the exploitation of
gas–condensate reservoirs, it is of interest to analyze the exact solutions of the problem of filtration of a two-phase
multicomponent mixture.

In the present work, we study the filtration of a gas–condensate mixture in the vicinity of a hydraulic fracture.
Equations describing the flow of a gas–condensate mixture in a porous medium containing a permeable fracture
are formulated. The properties of steady-state flows are studied. Because the problem of steady-state filtration of
a gas–condensate mixture in the one-dimensional and two-dimensional cases is integrated in quadratures [3–6], the
properties of the exact solutions can be used to interpret stationary studies of gas–condensate mixtures and predict
well productivity [7]. The method of solving one-dimensional and two-dimensional problems [3–6] is extended to
the three-dimensional case. Some numerical results for filtration problems in the vicinity of the hydraulic fracture
are given.

1. Basic Equations. We assume that an M -component gas–condensate mixture fills a spatial domain D

with a piecewise smooth boundary ∂D in a porous bed; the indices a, b, and c corresponding to the ordinal
numbers of the space coordinates xa (which may not be Cartesian) take values 1, 2, and 3, and the indices i, j,
and k corresponding to the mixture component numbers take values 1, . . . , M . The number of moles of the ith
component of the mixture in unit volume will be denoted by ni, and the mass of the mole of the ith component
by mi. The permeable fracture described by a two-dimensional surface Γ propagates through the domain D. The
surface Γ is assumed to be smooth, i.e., possible effects of the fractal dimension [8] are ignored. The indices α,
β, and γ corresponding to the ordinal numbers of the curvilinear coordinates ξα on the surface Γ take values 1
and 2. In the adopted notation, the surface Γ is described by the equations xa = Xa(ξα). Summation is performed
over repeated indices that correspond to the coordinates or numbers of the components. We use the following
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designations: gab = gab(xc) are the covariant components of the metric tensor in space; gαβ∗ = gαβ∗(ξγ) are
the covariant components of the metric tensor on the surface Γ, g = det (gab), g∗ = det (gαβ∗), ∂a = ∂/∂xa,
∂α∗ = ∂/∂ξα, Z,i = ∂Z/∂ni, and ∇a and ∇α∗ are the covariant derivatives in space and on the surface Γ (the
Levi-Civita connection for the metrics gab andgαβ∗, respectively [9]). We note that the metrics gab (gαβ∗) can be
used to raise and lower the indices of the tensor fields in the domain D (on the surface Γ) [10]. Because we consider
only isothermal flows, the temperature dependence of the parameters is ignored.

We assume that nig = nig(t, xa) and nic = nic(t, xa) are the densities of the gas and condensate components
in the matrix (measured in moles per unit volume), nig∗ = nig∗(t, ξα) and nic∗ = nic∗(t, ξα) are the densities of
the gas and condensate components in the fracture, sg = sg(t, xa) and sc = sc(t, xa) are the gas and condensate
saturations in the matrix (sg + sc = 1), and sg∗ = sg∗(t, ξα) and sc∗ = sc∗(t, ξα) are the gas and condensate
saturations in the fracture (sg∗ + sc∗ = 1).

For the mixture considered, the free energy per unit volume f = f(ni), which depends on the molar densities
of the components ni, is determined. In application to particular problems, the function f = f(ni) is calculated
using semiempirical equations of state [1, 2]. Knowing the free energy and the Gibbs–Duhem relation

dp = ni dκi, (1)

it is possible to calculate the chemical potential of a mixture component κi = f,i and the hydrostatic pressure
p = niκi − f .

The densities of the components are used to calculate the chemical potentials of the components in the gas
and condensate κig = κi(njg) and κic = κi(njc) and the phase pressure pg = p(nig), pc = p(nic) in the matrix.
The chemical potentials of the gas and condensate components [κig∗ = κi(njg∗) and κic∗ = κi(njc∗)] and the phase
pressures [pg∗ = p(nig∗) and pc∗ = p(nic∗)] in the fracture are calculated similarly. We assume that, in the absence
of capillary forces in the matrix and fracture, the conditions of local thermodynamic equilibrium of phases are
satisfied:

κig = κic, pg = pc; (2)

κig∗ = κic∗, pg∗ = pc∗. (3)

In addition, we assume that the porous medium is homogenous and isotropic, the porosity coefficient m does not
depend on pressure, the fracture opening is specified as a smooth field on the surface Γ: h∗ = h∗(ξα), and the
medium filling the fracture is characterized by a constant porosity coefficient m∗. Then, the total free energy of the
mixture is written as

F = m

∫

D

(
sgf(nig) + scf(nic) + (sgnig + scnic)miϕ

)
g dx1 dx2 dx3

+ m∗
∫

Γ

(
sg∗f(nig∗) + sc∗f(nic∗) + (sg∗nig∗ + sc∗nic∗)miϕ

)
h∗g∗ dξ1 dξ2, (4)

where ϕ = ϕ(xa) is the gravity potential.
The filtration of the gas–condensate mixture should satisfy the conditions of local preservation of the com-

ponents in the matrix

m ∂t(sgnig + scnic) + ∇aIa
i = 0 (5)

and in the fracture

m∗h∗ ∂t(sg∗nig∗ + sc∗nic∗) + ∇α∗Iα
i∗ + [Ia

i la] = 0. (6)

Here Ia
i and Iα

i∗ are the fluxes of the ith component in the matrix and fracture and la is the unit normal to the
surface Γ; square brackets denote a discontinuity of the quantity. The discontinuity is calculated as the difference
of the values of this parameter in the direction of the vector la and the value of this parameter in the opposite
direction.

We assume that the boundary ∂Γ of the surface Γ is a piecewise smooth curve. Let kα be a unit inward
normal to ∂Γ in the geometry of the surface Γ, ds a measure on ∂Γ, γ1 = ∂Γ ∩ ∂D the intersection of the fracture
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surface with the boundary of the spatial domain D, and γ2 = ∂Γ− γ1 the part of the fracture boundary inside the
domain D. We also assume that the internal fluxes Iα

i∗ vanish on the curve γ2.
Using the dynamic equations (5) and (6), the phase equilibrium conditions (2) and (3), and the adopted

assumptions, we calculate the time derivative of the total free energy of the mixture (4):

dF

dt
= Σ1 + Σ2,

(7)

Σ1 =
∫

∂D

KaIa
i (κi + miϕ) dA +

∫

γ1

kαIα
i∗(κi∗ + miϕ) ds;

Σ2 =
∫

D

Ia
i ∂a(κi + miϕ)g dx1 dx2 dx3 +

∫

Γ

(
Iα
i∗∂α∗(κi + miϕ) + (κi − κi∗)[Ia

i la]
)
g∗ dξ1 dξ2 (8)

(Ka is the unit inward normal to the surface ∂D). In (7), the term Σ1 describes the change in the free energy due
to the flow through the boundary of the domain, and the term Σ2 describes the change in the free energy due to
the processes inside the domain. For isothermal processes, an analog of the well-known condition of nonnegative
entropy production is the inequality

Σ2 � 0. (9)

For the fluxes, we assume that the components are transferred by the flow of the phases in the pores:

Ia
i = nigu

a
g + nicu

a
c ; (10)

Iα
i∗ = h∗(nig∗uα

g∗ + nic∗uα
c∗). (11)

Here ua
g and ua

c are the filtration velocities of the gas and condensate in the matrix and uα
g∗ and uα

c∗ are the filtration
velocities of the gas and condensate in the fracture. In addition, we assume that the chemical potentials in the
fracture and matrix are equal:

κi∗ = κi

∣∣∣
Γ
. (12)

From relation (12) it follows that the densities of the components in the phases and the pressures for the
mixture in the matrix and fracture coincide:

nig∗ = nig

∣∣∣
Γ
, nic∗ = nic

∣∣∣
Γ
, p∗ = p

∣∣∣
Γ
. (13)

Generally, however, the saturations in the fracture and matrix can differ:

sg∗ �= sg

∣∣∣
Γ
.

Using relations (1), (10), (11), and (13), we transform expression (8) to obtain

Σ2 =
∫

D

(
ua

g(∂ap + ρg∂aϕ) + ua
c (∂ap + ρc∂aϕ)

)
g dx1 dx2 dx3

+
∫

Γ

(
uα

g∗(∂α∗p + ρg∂α∗ϕ) + uα
c∗(∂α∗p + ρc∂α∗ϕ)

)
g∗ dξ1 dξ2, (14)

where ρg = minig and ρc = minic are the mass densities of the gas and condensate, respectively.
From (14) it follows that in order for inequality (9) to be valid, it is sufficient that the phases in the matrix

and fracture obey the Darcy law:

ua
g = −kfgμ

−1
g gab(∂bp + ρg∂bϕ); (15)

ua
c = −kfcμ

−1
c gab(∂bp + ρc∂bϕ); (16)

uα
g∗ = −k∗fg∗μ−1

g gαβ(∂β∗p + ρg∂β∗ϕ); (17)

uα
c∗ = −k∗fc∗μ−1

c gαβ(∂β∗p + ρc∂β∗ϕ). (18)
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Here k and k∗ are the absolute permeabilities of the matrix and fracture, fg and fc are the relative permeabilities
of the gas and condensate in the matrix, and fg∗ and fc∗ are the relative permeabilities in the fracture. It is
assumed that the relative permeabilities are specified as functions of the condensate saturation. According to the
assumption that the porous bed is homogeneous, the absolute permeability of the matrix k does not depend on the
coordinates. However, the absolute permeability of the medium filling the fracture is generally a function on the
surface Γ: k∗ = k∗(ξα).

Relations (2), (10), (11), (13), and (15)–(18) close the dynamic problem (5), (6). Different physically
meaningful formulations of the problems are possible which differ in the geometry of the domain D and the surface
Γ and boundary and initial conditions.

It should be noted that relations (12) and (15)–(18) are not a unique possible set of relations that close the
problem and are compatible with condition (9). For example, there are complicated filtration models with filtration
velocities dependent nonlinearly on the pressure gradient. In the model proposed in the present section, the
determining relations have the simplest analytical form and the model corresponds to a large number of laboratory
and full-scale observations.

2. Analytical Properties of Steady-State Solutions. We examine steady-state solutions of the problem
which correspond to steady-state filtration flows of the gas–condensate mixture. In this case, the conservation
equations for the components (5) and (6) reduce to the conditions

∇aIa
i = 0; (19)

∇α∗Iα
i∗ + [Ia

i la] = 0. (20)

We assume that the surface Γ is inside the domain D and that the two-dimensional boundary ∂D of the
domain D consists of piecewise smooth surfaces S1 and S2. On the surface S1, we specify a constant pressure pr

that corresponds to reservoir pressure, and on the surface S2, the flux condition through this surface. Because
the surface Γ describes the hydraulic fracture, it should geometrically be related to the production well. In the
formulation considered, the trajectory of the well bore is described by a curve L on the surface Γ. On the curve L,
a constant pressure pw corresponding to the bottom hole pressure is assumed. Gravity forces are neglected.

To analyze Eq. (19), it is convenient to choose a coordinate system in space such that the conditions x1 = p,
g1α = 0 are satisfied and that the coordinates x2, x3 at the fracture coincide with the internal coordinates of the
surface Γ: x2 = ξ1, x3 = ξ2. This coordinate system can be defined by setting the coordinates x2 and x3 to constant
along the streamlines (i.e along the pressure gradient field lines). In the calculations, however, it is necessary to
take into account that the mapping of the domain D onto the corresponding domain in the coordinates p and ξα is
two-sheeted because, for the same values of the parameters ξ1 and ξ2, the streamline can approach a fracture from
two sides.

In the chosen coordinate system, the fracture is described by an equation of the form p = p∗(ξα), the
boundary of the domain ∂D by the equation p = pr, the well L by the equation p = pw, and the metric form in the
space, by the definition, has the form

ds2 = P 2 dp2 + σαβ dξα dξβ . (21)

The metric form on the fracture Γ is calculated by the formula

gαβ∗ = P 2 ∂α∗p∗ ∂β∗p∗ + σαβ .

Using the metrics (21) and system (19), in the chosen coordinate system, we write

∂

∂p

(σ1/2

P
k(Bgcig + Bccic)

)
= 0,

Bg = fgμ
−1
g ng, Bc = fcμ

−1
c nc, ng =

M∑
i=1

nig, nc =
M∑
i=1

nic, (22)

cig = nig/ng, cic = nic/nc, σ = det (σαβ).
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System (22) has M first integrals

σ1/2k(Bgcig + Bccic)/P = qi(ξα). (23)

The right sides of these equations represent the component fluxes that enter the domain D through the boundary of
the domain ∂D. In the case where the reservoir pressure pr is higher than or equal to the saturation pressure pD, the
condensate is absent on the boundary ∂D (Bc = 0) and the right sides are proportional to the gas concentration ci0:

qi = ci0q(ξα). (24)

If the reservoir pressure is lower than the saturation pressure pD and, therefore, on the boundary ∂D there is
condensate, relations (24) are assumed to be valid but the set of concentrations ci0 is interpreted as the composition
of the moving part of the reservoir mixture.

The total flux to the well is calculated as an integral of the flux density over the boundary ∂D:

Q =
∫

∂D

P−1k(Bg + Bc)σ1/2 dξ1 dξ2 =
∫

∂D

q(ξα) dξ1 dξ2.

Using relation (24), we transform the set of integrals (23) to obtain

Agcig + Accic = ci0,

Ag = σ1/2P−1q−1kBg, Ac = σ1/2P−1q−1kBc.
(25)

Relations (25) are balance relations for the decomposition of the mixture with concentration ci0 into a gas and a
condensate with concentrations cig and cic, respectively. Thus, the following representation holds:

Ag = 1 − W, Ac = W. (26)

Here, the function W = W (p), representing the mole fraction of the condensate in the mixture with mean concen-
tration ci0, can be determined, independently of the filtration problem, from experiment or calculations using a
semiempirical equation of state [1, 2]. Similarly, all characteristics of the gas and condensate cig, cic, ng, nc, μg,
and μc can be found as functions of the pressure p.

Relations (26) imply the following equality containing no metric coefficients:

fc/fg = Wμcng(1 − W )−1μ−1
g n−1

c . (27)

The right side of this equality contains a function of the pressure p, and the left side contains a function of the
condensate saturation in the matrix sc. Thus, relation (27) can be treated as an equation that describes the
dependence of the saturation sc on the pressure p.

From the aforesaid, it follows that, before solving the proper filtration problem, which results in the spatial
distribution of the parameters of the mixture, one can obtain the dependencesBg = Bg(p) and Bc = Bc(p). Denoting
Φ = Φ(p) = Bg(p) + Bc(p), from (19) it is easy to obtain the elliptic equation for the matrix pressure:

0 = k−1
M∑
i=1

∇aIa
i = gab∇a(Φ(p)∇bp). (28)

Using the results obtained for the component fluxes in the matrix, we transform system (20) as follows:

gαβ
∗ k−1∇α∗(k∗h∗(Bg∗cig + Bc∗cic)∇β∗p) = −Φci0[la∂ap],

Bg∗ = fg∗μ−1
g ng, Bc∗ = fc∗μ−1

c nc.
(29)

The right side of system (29) is proportional to the constant vector ci0; therefore, we can seek a solution of the
problem in which the expression under the derivative side on the left of the system, which depends on the chemical
component number, is also proportional to the vector ci0. In this case, similarly to (25), we obtain the balance
relations

Ag∗cig + Ac∗cic = ci0,

Ag∗ = Φ−1
∗ Bg∗, Ac∗ = Φ−1

∗ Bc∗, Φ∗ = Bg∗ + Bc∗.
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Fig. 1. Geometry of the calculation domain and fracture:
well (1), computational domain (2), and fracture (3).

Similarly to (26), the relations Ag∗ = 1 − W and Ac∗ = W are valid. Therefore, the dependence of the condensate
saturation in the fracture sc∗ on the pressure p can be determined form the analog of Eq. (27):

fc∗/fg∗ = Wμcng(1 − W )−1μ−1
g n−1

c .

Thus, the quantity Φ∗ is determined as a function of the pressure p. Summing Eqs. (29) by the component
numbers, we obtain a differential relation for the pressure p on the surface Γ that is the internal boundary conditions
for problem (28):

gαβ
∗ k−1∇α∗(k∗h∗Φ∗∇β∗p) + Φ[la∂ap] = 0. (30)

According to the aforesaid, in addition to condition (30), the pressure p is subjected to the boundary conditions

p
∣∣∣
S1

= pr, λa ∂ap
∣∣∣
S2

= 0; (31)

p
∣∣∣
L

= pw, (32)

where λa is the normal to the surface S2.
In the particular case where the fracture conductivity is high enough (k∗/k → +∞), the problem reduces to

Eq. (28), boundary conditions (31), and the additional boundary condition

p
∣∣∣
Γ

= pw,

which replaces conditions (30) and (32). Thus, the problem of filtration of a gas–condensate mixture in the vicinity
of a hydraulic fracture reduces to a nonlinear elliptic equation with boundary conditions containing a nonlinear
elliptical operator on the fracture [see (30)]. Generally, this problem can be solved only using numerical methods.
Nevertheless, the resulting pressure problem is much simpler than the initial problem (19), (20), which contains
unknown phase concentrations and saturations. It should be noted that Eqs. (28) and (30) are written in invariant
form which does not depend on the employed coordinate systems in space and on the surface Γ, although these
equations were derived using a particular coordinate system [see (21)].

3. Some Numerical Solutions of the Problem. In the formulation set forth in Sec. 2, the filtration
problem was solved numerically for a mixture similar in composition to the composition of the mixture produced at
object No. 2 of the Karachaganak oil–gas–condensate field (Republic of Kazakhstan). The mixture has the following
molar composition: cN2 = 0.0103, cCO2 = 0.0462, cH2S = 0.0432, cCH4 = 0.6269, cC2H6 = 0.0822, cC3H8 = 0.0308,
cnC4H10 = 0.0062, ciC4H10 = 0.0103, cC5 = 0.0285, cC6 = 0.0149, and cC7+ = 0.1005.

The adopted reservoir pressure pr = 53.5 MPa is close to the saturation pressure of 53.0 MPa, and the
bottom hole pressure is pw = 41.5 MPa. The thermodynamic characteristics and phase transitions were calculated
by the Peng–Robinson equation of state [1, 2]. The viscosities of the gas and condensate were set constant:
μg = 2.3 · 10−5 Pa · sec and μc = 4.9 · 10−4 Pa · sec.
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Fig. 2. Gas flow rate versus fracture length Lfx: curves 1 and 2 refer to k∗h∗ = 400
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The numerical modeling was performed for a rectangular plane fracture of varied lengths for fixed dimensions
of the computational domain (Fig. 1). The upper and lower faces of the computational domain were assumed to be
impervious, and the pressure on the lateral faces was equal to the reservoir pressure. The results [3] were obtained
for a perfect fracture (of infinite conductivity k∗h∗) and an imperfect fracture (of finite conductivity k∗h∗). For the
imperfect fracture, we used two conductivity values 400 D ·mm or 1000 D ·mm, and the permeability of the matrix
was set equal to 1 mD (here and below 1 D=1 Darcy is the permeation achieved by the passage of 1 ml of fluid
of 1-cP viscosity flowing in 1 sec). The employed finite-difference grid contained a tree-dimensional computational
domain with dimensions of 800 × 200 × 22 m, which was divided into 80 × 20 × 22 cells, and a two-dimensional
fracture with dimensions of (100–600) × 20 m, which was divided into (10–60) × 20 cells.

In the calculation, the following pressure dependences of the relative permeabilities were used:

fg = (sg − sg1)a/(1 − sg1)a, fc = (sc − sc1)b/(1 − sc1)b.

Here sg1 and sc1 are the threshold mobilities for the gas and condensate, respectively. Various relative permeabilities
were used:

— in the matrix, a = 2, b = 3, sg1 = 0.08, and sc1 = 0.12;
— on the fracture, a = 2, b = 2, sg1 = 0, and sc1 = 0.
The calculation results are presented in Fig. 2. It is evident that the curves of the well flow rate versus fracture

length are monotonically increasing. For the imperfect fracture, the curves enter an asymptote and, beginning from
a certain length, the fracture growth does not lead to a considerable increase in the flow rate. Thus, for the specified
conductivity, there may be a choice of the optimal fracture length. For the perfect fracture, the dependence of the
flow rate on the fracture length is almost linear.

Figure 3 shows the pressure and condensate saturation distribution. It is evident that a condensate roll
forms near the fracture with a considerable pressure gradient in this region.

Conclusions. The model proposed here for the filtration of a gas–condensate mixture in the vicinity of a
hydraulic fracture allows effective predictions of the well productivity and distributions of mixture parameters in
the matrix and fracture, which can be used in designing fluid fracturing.

This work was supported by the Schlumberger Oilfield Services international company (Grant No. RPO-123).
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